25 research outputs found

    Scientific validation of the traditional knowledge of Sikta ("Tabernaemontana sananho", Apocynaceae) in the Canelo-Kichwa Amazonian community

    Get PDF
    Tabernaemontana sananho is a tree member of the Apocynaceae family referred to as sikta in Kichwa language. It is widely used in northern South America as painkiller, stimulant, antiseptic and is also highly valued as a sacred plant. In this work, we report the traditional knowledge and uses of sikta by the scarcely contacted Kichwa community of Pakayaku (Pastaza province, Ecuador) and further provide a scientific framework for its scientific validation. A review of the available literature revealed the presence of a wealth of biologically active indole alkaloids that potentially account for the great number of medicinal uses of sikta. This case study is illustrative of the importance of scientific validation of traditional knowledge (i) for indigenous communities —as empowering tool—, (ii) for the sake of scientific knowledge and (iii) for plant conservation

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Promising Potential of Lonchocarpus utilis against South American Myasis

    No full text
    Traditional medicine is especially important in the treatment of neglected tropical diseases because it is the way the majority of populations of affected countries manage primary healthcare. We present a case study that can serve as an example that can be replicated by others in the same situation. It is about the validation of a local remedy for myasis in Amazonian Ecuador, which is contrasted by bibliographic chemical reviews and in silico activity tests. We look for scientific arguments to demonstrate the reason for using extracts of Lonchocarpus utilis against south American myasis (tupe). We provide a summary of the isoflavonoids, prenylated flavonoids, chalcones, and stilbenes that justify the action. We make modeling predictions on the affinity of eight chemical components and enzyme targets using Swiss Target Prediction software. We conclude that the effects of this extract can be reasonably attributed to an effect of the parasite that causes the disease, similar to the one produced by synthetic drugs used by conventional medicine (e.g., Ivermectine)

    On the Possible Chemical Justification of the Ethnobotanical Use of Hyptis obtusiflora in Amazonian Ecuador

    No full text
    In rural areas of Latin America, Hyptis infusions are very popular. Hyptis obtusiflora extends from Mexico throughout Central America to Bolivia and Peru. It has added value in Ecuador where it has been used by different ethnic groups. We aimed to learn about the traditional knowledge of ancient Kichwa cultures about this plant, and to contrast this knowledge with the published information organized in occidental databases. We proposed to use traditional knowledge as a source of innovation for social development. Our specific objectives were to catalogue the uses of H. obtusiflora in the community, to prospect on the bibliography on a possible chemical justification for its medicinal use, to propose new products for development, and to give arguments for biodiversity conservation. An ethnobotanical survey was made and a Prisma 2009 Flow Diagram was then followed for scientific validation. We rescued data that are novel contributions for the ethnobotany at the national level. The catalogued main activity of anti-inflammation can be related to the terpene composition and the inhibition of xanthine oxidase. This opens the possibility of researching the extract of this plant as an alternative to allopurinol or uricosuric drugs. This is a concrete example of an argument for biodiversity conservation

    Chiricaspi (Brunfelsia grandiflora, Solanaceae), a Pharmacologically Promising Plant

    No full text
    This study’s objective was to evaluate the rescued traditional knowledge about the chiricaspi (Brunfelsia grandiflora s.l.), obtained in an isolated Canelo-Kichwa Amazonian community in the Pastaza province (Ecuador). This approach demonstrates well the value of biodiversity conservation in an endangered ecoregion. The authors describe the ancestral practices that remain in force today. They validated them through bibliographic revisions in data megabases, which presented activity and chemical components. The authors also propose possible routes for the development of new bioproducts based on the plant. In silico research about new drug design based on traditional knowledge about this species can produce significant progress in specific areas of childbirth, anesthesiology, and neurology

    Nova genera & species plantarum; seu, Prodromus descriptionum vegetabilium, maximam partem incognitorum

    Get PDF
    Despite belonging to one of the most biodiverse ecoregions on Earth, the Ecuadorian Amazon remains largely unexplored. During the elaboration of an ethnobotanical checklist of the useful plants in the Kichwa community of Pakayaku (Pastaza, Ecuador), we faced taxonomical difficulties due to the lack of basic information and unknown location of type specimens for several plant names. In this contribution, we present notes clarifying the status of six taxa of the H. Karsten and E. F. Poeppig names and locate the corresponding type specimens at the herbarium W (Natural History Museum, Vienna).A pesar de pertenecer a una de las ecorregiones más biodiversas de la Tierra, la Amazonía ecuatoriana permanece en gran parte inexplorada. Durante la elaboración de una lista de comprobación etnobotánica de las plantas útiles en la comunidad Kichwa de Pakayaku (Pastaza, Ecuador), enfrentamos dificultades taxonómicas debido a la falta de información básica y la ubicación desconocida de los tipos de especímenes para varios nombres de plantas. En esta contribución, presentamos notas que aclaran el estado de los nombres de seis taxones de H. Karsten y E. F. Poeppig y localizamos los especímenes de tipo correspondientes en el herbario W (Museo de Historia Natural, Viena)

    In Silico Molecular Studies of Antiophidic Properties of the Amazonian Tree Cordia nodosa Lam.

    No full text
    We carried out surveys on the use of Cordia nodosa Lam. in the jungles of Bobonaza (Ecuador). We documented this knowledge to prevent its loss under the Framework of the Convention on Biological Diversity and the Nagoya Protocol. We conducted bibliographic research and identified quercetrin as a significant bioactive molecule. We studied its in silico biological activity. The selected methodology was virtual docking experiments with the proteins responsible for the venomous action of snakes. The molecular structures of quercetrin and 21 selected toxins underwent corresponding tests with SwissDock and Chimera software. The results point to support its antiophidic use. They show reasonable geometries and a binding free energy of −7 to −10.03 kcal/mol. The most favorable values were obtained for the venom of the Asian snake Naja atra (5Z2G, −10.03 kcal/mol). Good results were also obtained from the venom of the Latin American Bothrops pirajai (3CYL, −9.71 kcal/mol) and that of Ecuadorian Bothrops asper snakes (5TFV, −9.47 kcal/mol) and Bothrops atrox (5TS5, −9.49 kcal/mol). In the 5Z2G and 5TS5 L-amino acid oxidases, quercetrin binds in a pocket adjacent to the FAD cofactor, while in the myotoxic homologues of PLA2, 3CYL and 5TFV, it joins in the hydrophobic channel formed when oligomerizing, in the first one similar to α-tocopherol. This study presents a case demonstration of the potential of bioinformatic tools in the validation process of ethnobotanical phytopharmaceuticals and how in silico methods are becoming increasingly useful for sustainable drug discovery

    Transcriptome of the adult female malaria mosquito vector Anopheles albimanus.

    Get PDF
    International audienceUNLABELLED: ABSTRACT: BACKGROUND: Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. RESULTS: We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. CONCLUSIONS: We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may be relevant to the Plasmodium lifecycle and can serve as the starting point for searching targets for novel control strategies. Our data increase the available genomic information regarding An. albimanus several hundred-fold, and will facilitate molecular research in medical entomology, evolutionary biology, genomics and proteomics of anopheline mosquito vectors. The data reported in this manuscript is accessible to the community via the VectorBase website (http://www.vectorbase.org/Other/AdditionalOrganisms/)
    corecore